Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease.
نویسندگان
چکیده
Huntington disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine tract near the N terminus of the protein huntingtin, leading to dramatic loss of striatal medium-sized spiny GABAergic projection neurons (MSNs). Evidence suggests overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) contributes to selective degeneration of MSNs in HD. Striatal MSNs are enriched in NR2B, and whole cell current and excitotoxicity mediated predominantly by the NR2B subtype of NMDARs is increased with expression of mutant huntingtin in transfected cell lines and striatal MSNs from mice models. To test whether synaptic NMDAR current is altered by mutant huntingtin expression, we recorded striatal MSN excitatory postsynaptic currents (EPSCs) evoked by stimulation of cortical afferents in corticostriatal slices from YAC72 mice and their wild-type (WT) littermates at age 21-31 days. The ratio of NMDAR- to AMPAR-mediated EPSC amplitude was significantly increased in YAC72 compared to WT mice. Furthermore, using a paired-pulse stimulation protocol as a measure of presynaptic glutamate release probability, we found no significant differences between YAC72 and WT striatal MSN responses. These data suggest selective potentiation of postsynaptic NMDAR activity at corticostriatal synapses in YAC72 mice. Measurements of EPSC decay kinetics, as well as the effects of NR2B-subtype selective antagonists and glycine concentration on EPSC amplitude, are consistent with the majority of postsynaptic NMDARs being triheteromers of NR1/NR2A/NR2B in both WT and YAC72 mice. Together with previous results, our data suggest that enhanced activity of NR2B-containing NMDARs is one of the earliest changes leading to neuronal degeneration in HD.
منابع مشابه
Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease
Previous work suggests N-methyl-D-aspartate receptor (NMDAR) activation may be involved in degeneration of medium-sized spiny striatal neurons in Huntington's disease (HD). Here we show that these neurons are more vulnerable to NMDAR-mediated death in a YAC transgenic FVB/N mouse model of HD expressing full-length mutant huntingtin, compared with wild-type FVB/N mice. Excitotoxic death of these...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملExcitatory and inhibitory synapses in neuropeptide Y-expressing striatal interneurons.
Although rare, interneurons are pivotal in governing striatal output by extensive axonal arborizations synapsing on medium spiny neurons. Using a genetically modified mouse strain in which a green fluorescent protein (GFP) is driven to be expressed under control of the neuropeptide Y (NPY) promoter, we identified NPY interneurons and compared them with striatal principal neurons. We found that ...
متن کاملIn vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease.
N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity is implicated as a proximate cause of neurodegeneration in Huntington Disease (HD). This hypothesis has not been tested rigorously in vivo. NMDAR-NR2B subunits are a major NR2 subunit expressed by striatal medium spiny neurons that degenerate in HD. To test the excitotoxic hypothesis, we crossed a well validated murine genetic model ...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2004